Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
Where is the worm? Predictive modelling of the habitat preferences of the tube-building polychaete Lanice conchilega
Willems, W.; Goethals, P.; Van den Eynde, D.; Van Hoey, G.; Van Lancker, V.; Verfaillie, E.; Vincx, M.; Degraer, S. (2008). Where is the worm? Predictive modelling of the habitat preferences of the tube-building polychaete Lanice conchilega. Ecol. Model. 212(1-2): 74-79. dx.doi.org/10.1016/j.ecolmodel.2007.10.017
In: Ecological Modelling. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0304-3800; e-ISSN 1872-7026
| |
Trefwoorden |
Habitat selection Lanice conchilega (Pallas, 1766) [WoRMS]; Lanice conchilega (Pallas, 1766) [WoRMS]; Polychaeta [WoRMS] Marien/Kust |
Author keywords |
Lanice conchilega; Polychaeta; Habitat preference; Generalized linear models (GLM); Artificial neural networks (ANN) |
Auteurs | | Top |
- Willems, W.
- Goethals, P.
- Van den Eynde, D.
- Van Hoey, G.
|
- Van Lancker, V.
- Verfaillie, E.
- Vincx, M.
- Degraer, S.
|
|
Abstract |
Grab samples to monitor the distribution of marine macrobenthic species (animals >1 mm, living in the sand) are time consuming and give only point based information. If the habitat preference of a species can be modelled, the spatial distribution can be predicted on a full coverage scale from the environmental variables. The modelling techniques Generalized Linear Models (GLM) and Artificial Neural Networks (ANN) were compared in their ability to predict the occurrence of Lanice conchilega, a common tube-building polychaete along the North-western European coastline. Although several types of environmental variables were in the data set (granulometric, currents, nutrients) only three granulometric variables were used in the final models (median grain-size, % mud and % coarse fraction). ANN slightly outperformed GLM for a number of performance indicators (% correct predictions, specificity and sensitivity), but the GLM were more robust in the crossvalidation procedure. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.