Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
On the parameters of absorbing layers for shallow water models
Modave, A.; Deleersnijder, E.; Delhez, E.J.M. (2010). On the parameters of absorbing layers for shallow water models. Ocean Dynamics 60(1): 65-79. dx.doi.org/10.1007/s10236-009-0243-0
In: Ocean Dynamics. Springer-Verlag: Berlin; Heidelberg; New York. ISSN 1616-7341; e-ISSN 1616-7228, meer
| |
Trefwoord |
|
Author keywords |
Boundary condition; Absorbing layer; Sponge layer; Shallow water model |
Auteurs | | Top |
- Modave, A.
- Deleersnijder, E.
- Delhez, E.J.M.
|
|
|
Abstract |
Absorbing/sponge layers used as boundary conditions for ocean/marine models are examined in the context of the shallow water equations with the aim to minimize the reflection of outgoing waves at the boundary of the computational domain. The optimization of the absorption coefficient is not an issue in continuous models, for the reflection coefficient of outgoing waves can then be made as small as we please by increasing the absorption coefficient. The optimization of the parameters of absorbing layers is therefore a purely discrete problem. A balance must be found between the efficient damping of outgoing waves and the limited spatial resolution with which the resulting spatial gradients must be described. Using a one-dimensional model as a test case, the performances of various spatial distributions of the absorption coefficient are compared. Two shifted hyperbolic distributions of the absorption coefficient are derived from theoretical considerations for a pure propagative and a pure advective problems. These distribution show good performances. Their free parameter has a well-defined interpretation and can therefore be determined on a physical basis. The properties of the two shifted hyperbolas are illustrated using the classical two-dimensional problems of the collapse of a Gaussian-shaped mound of water and of its advection by a mean current. The good behavior of the resulting boundary scheme remains when a full non-linear dynamics is taken into account. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.