Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
Selecting variables for habitat suitability of Asellus (Crustacea, Isopoda) by applying input variable contribution methods to artificial neural network models
Mouton, A.M.; Dedecker, A.P.; Lek, S.; Goethals, P.L.M. (2010). Selecting variables for habitat suitability of Asellus (Crustacea, Isopoda) by applying input variable contribution methods to artificial neural network models. Environ. Model. Assessm. 15(1): 65-79. dx.doi.org/10.1007/s10666-009-9192-8
In: Environmental Modeling and Assessment. Springer: Bussum; Amsterdam; Dordrecht. ISSN 1420-2026; e-ISSN 1573-2967
| |
Trefwoord |
|
Author keywords |
Biological assessment; Environmental impact; Macroinvertebrates;Predictive modelling; Rivers; Sensitivity analysis; Multiple regression |
Auteurs | | Top |
- Mouton, A.M.
- Dedecker, A.P.
- Lek, S.
- Goethals, P.L.M.
|
|
|
Abstract |
This study aimed to compare different methods to analyse the contribution of individual river characteristics to predict the abundance of Asellus (Crustacea, Isopoda). Six methods which provide the relative contribution and/or the contribution profile of the input variables of artificial neural network models were therefore compared: (1) the ‘partial derivatives’ method; (2) the ‘weights’ method; (3) the ‘perturb’ method; (4) the ‘profile’ method; (5) the ‘classical stepwise’ method; (6) the ‘improved stepwise’ method. Consequently, the key variables which affect the habitat preferences of Asellus could be identified. To evaluate the performance of the artificial neural network model, the model predictions were compared with the results of a multiple linear regression analysis. The dataset consisted of 179 samples, collected over a 3-year period in the Zwalm catchment in Flanders, Belgium. Twenty-four environmental variables as well as the log-transformed abundance of Asellus were used in this study. The different contribution methods seemed to give similar results concerning the order of importance of the input variables. Nevertheless, their diverse computation led to differences in sensitivity and stability of the methods and the derived outcomes on the habitat preferences. From an ecological point of view, the environmental variables describing the stream type (width, depth, stream order and distance to mouth) were the most significant variables for Asellus in the Zwalm catchment during the period 2000–2002 for all applied methods. Indirectly, one can conclude that the water quality is not the limiting factor for the survival of Asellus in the Zwalm catchment. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.