Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements Jamet, C.; Loisel, H.; Kuchinke, C.P.; Ruddick, K.; Zibordi, G.; Feng, H. (2011). Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements. Remote Sens. Environ. 115(8): 1955-1965. http://dx.doi.org/10.1016/j.rse.2011.03.018
In: Remote Sensing of Environment. Elsevier: New York,. ISSN 0034-4257; e-ISSN 1879-0704, meer
|
Beschikbaar in | Auteurs |
|
Trefwoord |
|
Author keywords |
|
Project | Top | Auteurs |
|
Auteurs | Top | |
|
|
Abstract |
This paper presents results of an inter-comparison study of three methods that compensate for NIR water-leaving radiances and that are based on very different hypothesis: 1) the standard SeaWiFS algorithm (Stumpf et al., 2003; Bailey et al., 2010) based on a bio-optical model and an iterative process; 2) the algorithm developed by Ruddick et al. (2000) based on the spatial homogeneity of the NIR ratios of the aerosol and water-leaving radiances; and 3) the algorithm of Kuchinke et al. (2009) based on a fully coupled atmosphere–ocean spectral optimization inversion. They are compared using normalized water-leaving radiance nLw in the visible. The reference source for comparison is ground-based measurements from three AERONET-Ocean Color sites, one in the Adriatic Sea and two in the East Coast of USA. Based on the matchup exercise, the best overall estimates of the nLw are obtained with the latest SeaWiFS standard algorithm version with relative error varying from 14.97% to 35.27% for ? = 490 nm and ? = 670 nm respectively. The least accurate estimates are given by the algorithm of Ruddick, the relative errors being between 16.36% and 42.92% for ? = 490 nm and ? = 412 nm, respectively. The algorithm of Kuchinke appears to be the most accurate algorithm at 412 nm (30.02%), 510 (15.54%) and 670 nm (32.32%) using its default optimization and bio-optical model coefficient settings. Similar conclusions are obtained for the aerosol optical properties (aerosol optical thickness t(865) and the Ångström exponent, a(510, 865)). Those parameters are retrieved more accurately with the SeaWiFS standard algorithm (relative error of 33% and 54.15% for t(865) and a(510, 865)). A detailed analysis of the hypotheses of the methods is given for explaining the differences between the algorithms. The determination of the aerosol parameters is critical for the algorithm of Ruddick et al. (2000) while the bio-optical model is critical for the algorithm of Stumpf et al. (2003) utilized in the standard SeaWiFS atmospheric correction and both aerosol and bio-optical model for the coupled atmospheric–ocean algorithm of Kuchinke. The Kuchinke algorithm presents model aerosol-size distributions that differ from real aerosol-size distribution pertaining to the measurements. In conclusion, the results show that for the given atmospheric and oceanic conditions of this study, the SeaWiFS atmospheric correction algorithm is most appropriate for estimating the marine and aerosol parameters in the given turbid waters regions. |
Top | Auteurs |