Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
Identification of uncertainty in sources in flood forecasting
Van Steenbergen, N.; Willems, P.; Deschamps, M. (2013). Identification of uncertainty in sources in flood forecasting, in: Proceedings of the international conference on flood resilience: experiences in Asia and Europe, 5-7 September 2013, Exeter, United Kingdom. pp. [1-8]
In: (2013). Proceedings of the international conference on flood resilience: experiences in Asia and Europe, 5-7 September 2013, Exeter, United Kingdom. University of Exeter: Exeter. ISBN 978-0-9926529-0-6, meer
|
Trefwoord |
Prediction > Flood forecasting
|
Author keywords |
Hydrological modelling; Uncertainty decomposition |
Auteurs | | Top |
- Van Steenbergen, N.
- Willems, P.
- Deschamps, M., meer
|
|
|
Abstract |
An essential factor to be taken into account in river flood forecasting is uncertainty. Each flood forecast is subject to different sources of uncertainty. Understanding the relative importance of the different sources of uncertainty could significantly increase the effectiveness of improvement actions in the flood forecasting system. This research considers three key uncertainty sources for hydrological flood forecasting: model uncertainty, forecasted rainfall uncertainty and uncertainty in the initial conditions of the modelrun. A non-parametric data-based approach is applied to quantify the total flood forecast uncertainty. By resimulation of the historical forecasts with optimal initial conditions and rainfall observations, the importance of these uncertainty sources is identified. The methodology is applied to the catchment of the Rivierbeek, Belgium. It was found that the most important source of uncertainty for the considered case study was the model uncertainty. Therefore model recalibration was suggested as a first action to be taken in order to reduce the forecast uncertainty. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.