Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields
In: Coastal Engineering: An International Journal for Coastal, Harbour and Offshore Engineers. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0378-3839; e-ISSN 1872-7379, meer
Is gerelateerd aan:Suzuki, T.; Hu, Z.; Kumada, K.; Phan, K.L.; Zijlema, M. (2022). Corrigendum to “Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields” [Coast. Eng. 149 (July 2019) 49–64]. Coast. Eng. 173: 104100. https://dx.doi.org/10.1016/j.coastaleng.2022.104100, meer
| |
Author keywords |
Porosity effect; Wave-vegetation interaction; Horizontal vegetation cylinders; Inertia force; Dense vegetation; SWASH model |
Auteurs | | Top |
- Suzuki, T., meer
- Hu, Z.
- Kumada, K.
|
|
|
Abstract |
A new wave-vegetation model is implemented in an open-source code, SWASH (Simulating WAves till SHore). The governing equations are the nonlinear shallow water equations, including non-hydrostatic pressure. Besides the commonly considered drag force induced by vertical vegetation cylinders, drag force induced by horizontal vegetation cylinders in complex mangrove root systems, as well as porosity and inertia effects, are included in the vegetation model, providing a logical supplement to the existing models. The vegetation model is tested against lab measurements and existing models. Good model performance is found in simulating wave height distribution and maximum water level in vegetation fields. The relevance of including the additional effects is demonstrated by illustrative model runs. We show that the difference between vertical and horizontal vegetation cylinders in wave dissipation is larger when exposed to shorter waves, because in these wave conditions the vertical component of orbital velocity is more prominent. Both porosity and inertia effects are more pronounced with higher vegetation density. Porosity effects can cause wave reflection and lead to reduced wave height in and behind vegetation fields, while inertia force leads to negative energy dissipation that reduces the wavedamping capacity of vegetation. Overall, the inclusion of both effects leads to greater wave reduction compared to common modeling practice that ignores these effects, but the maximum water level is increased due to porosity. With good model performance and extended functions, the new vegetation model in SWASH code is a solid advancement toward refined simulation of wave propagation over vegetation fields. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.