Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Extrapolation in species distribution modelling. Application to Southern Ocean marine species Guillaumot, C.; Moreau, C.; Danis, B.; Saucède, T. (2020). Extrapolation in species distribution modelling. Application to Southern Ocean marine species. Prog. Oceanogr. 188: 102438. https://dx.doi.org/10.1016/j.pocean.2020.102438
In: Progress in Oceanography. Pergamon: Oxford,New York,. ISSN 0079-6611; e-ISSN 1873-4472, meer
|
Beschikbaar in | Auteurs |
Trefwoord |
|
Author keywords |
|
Auteurs | Top | |
|
Abstract |
In this study, we used the Multivariate Environmental Similarity Surface (MESS) index to quantify model uncertainty associated to extrapolation. Considering the reference dataset of environmental conditions for which species presence-only records are modelled, extrapolation corresponds to the part of the projection area for which one environmental value at least falls outside of the reference dataset. Six abundant and common sea star species of marine benthic communities of the Southern Ocean were used as case studies. Results show that up to 78% of the projection area is extrapolation, i.e. beyond conditions used for model calibration. Restricting the projection space by the known species ecological requirements (e.g. maximal depth, upper temperature tolerance) and increasing the size of presence datasets were proved efficient to reduce the proportion of extrapolation areas. We estimate that multiplying sampling effort by 2 or 3-fold should help reduce the proportion of extrapolation areas down to 10% in the six studied species. Considering the unexpectedly high levels of extrapolation uncertainty measured in SDM predictions, we strongly recommend that studies report information related to the level of extrapolation. Waiting for improved datasets, adapting modelling methods and providing such uncertainy information in distribution modelling studies are a necessity to accurately interpret model outputs and their reliability. |
Top | Auteurs |