Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
Estimating marine carbon uptake in the northeast Pacific using a neural network approach
Duke, P.J.; Hamme, R.C.; Ianson, D.; Landschützer, P.; Ahmed, M.M.M.; Swart, N.C.; Covert, P.A. (2023). Estimating marine carbon uptake in the northeast Pacific using a neural network approach. Biogeosciences 20(18): 3919-3941. https://dx.doi.org/10.5194/bg-20-3919-2023
In: Gattuso, J.P.; Kesselmeier, J. (Ed.) Biogeosciences. Copernicus Publications: Göttingen. ISSN 1726-4170; e-ISSN 1726-4189
| |
Auteurs | | Top |
- Duke, P.J.
- Hamme, R.C.
- Ianson, D.
- Landschützer, P.
|
- Ahmed, M.M.M.
- Swart, N.C.
- Covert, P.A.
|
|
Abstract |
The global ocean takes up nearly a quarter of anthropogenic CO2 emissions annually, but the variability in this uptake at regional scales remains poorly understood. Here we use a neural network approach to interpolate sparse observations, creating a monthly gridded seawater partial pressure of CO2 (pCO2) data product from January 1998 to December 2019, at 1/12° x 1/12° spatial resolution, in the northeast Pacific open ocean, a net sink region. The data product (ANN-NEP; NCEI Accession 0277836) was created from pCO2 observations within the 2021 version of the Surface Ocean CO2 Atlas (SOCAT) and a range of predictor variables acting as proxies for processes affecting pCO2 to create nonlinear relationships to interpolate observations at a spatial resolution 4 times greater than leading global products and with better overall performance. In moving to a higher resolution, we show that the internal division of training data is the most important parameter for reducing overfitting. Using our pCO2 product, wind speed, and atmospheric CO2, we evaluate air–sea CO2 flux variability. On sub-decadal to decadal timescales, we find that the upwelling strength of the subpolar Alaskan Gyre, driven by large-scale atmospheric forcing, acts as the primary control on air–sea CO2 flux variability (r2=0.93, p<0.01). In the northern part of our study region, divergence from atmospheric CO2 is enhanced by increased local wind stress curl, enhancing upwelling and entrainment of naturally CO2-rich subsurface waters, leading to decade-long intervals of strong winter outgassing. During recent Pacific marine heat waves from 2013 on, we find enhanced atmospheric CO2 uptake (by as much as 45 %) due to limited wintertime entrainment. Our product estimates long-term surface ocean pCO2 increase at a rate below the atmospheric trend (1.4 ± 0.1 µatm yr−1) with the slowest increase in the center of the subpolar gyre where there is strong interaction with subsurface waters. This mismatch suggests the northeast Pacific Ocean sink for atmospheric CO2 may be increasing. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.