Over het archief
In 2012 verloren we Jean Jacques Peters, voormalig ingenieur van het Waterbouwkundig Laboratorium (1964 tot 1979) en internationaal expert in sedimenttransport, rivierhydraulica en -morfologie. Als eerbetoon aan hem hebben we potamology (http://www.potamology.com/) gecreëerd, een virtueel gedenkarchief dat als doel heeft om zijn manier van denken en morfologische aanpak van rivierproblemen in de wereld in stand te houden en te verspreiden.
Het merendeel van z’n werk hebben we toegankelijk gemaakt via onderstaande zoekinterface.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Idealized model study on tidal wave propagation in prismatic and converging basins with tidal flats Boelens, T.; De Mulder, T.; Schuttelaars, H.M.; Schramkowski, G.P. (2016). Idealized model study on tidal wave propagation in prismatic and converging basins with tidal flats, in: Erpicum, S. et al. Proceedings of the 4th IAHR Europe Congress, Liege, Belgium, 27-29 July 2016: Sustainable Hydraulics in the Era of Global Change. pp. 364
In: Erpicum, S. et al. (Ed.) (2016). Proceedings of the 4th IAHR Europe Congress, Liege, Belgium, 27-29 July 2016: Sustainable Hydraulics in the Era of Global Change. CRC Press/Balkema: London. ISBN 978-1-138-02977-4. xxi, 194 pp.
|
Beschikbaar in | Auteurs |
| |
Documenttype: Congresbijdrage |
Auteurs | Top | |
|
Abstract |
To gain some fundamental insight, an idealized model (which is fast, compared to complex procesbased models and easy to analyse) has been used, that describes the water motion in a semi-enclosed (converging) basin by means of the shallow water equations, forced by prescribed free surface elevations at the entrance (x=0). The main focus of this paper is to study the influence of tidal flat geometry on the spatial structure of different tidal harmonics and of tidal asymmetry between ebb and flood periods. This work represents a first, validation step in the development of a 2D idealized model for the identification of morphodynamic equilibria. The Finite Element Method (FEM), was used to spatially discretize the governing equations, in which the physical variables are expanded in their tidal constituents. The rectangular and converging tidal basins, that are considered here, can thus be easily extended to more general geometries. After a favorable comparison with other models in literature, the tidal hydrodynamics was studied for different values of bottom roughness and for different widths of the tidal flats. As an example, the free surface elevation amplitude of the internally generated overtideM4 (quarter-diurnal), relative to that of theM2 (semi-diurnal) component, prescribed at the entrance, is given in Fig. 1, for a converging channel. Though discrepancies exist between the 1D and 2D results, both models show that the amplitude ratio increases towards the closed end of the basin (x=L). |
Top | Auteurs |