- Chesterman, X.; Verstraeten, T.; Daems, P.J.; Nowé, A.; Helsen, J. (2023). Overview of normal behavior modeling approaches for SCADA-based wind turbine condition monitoring demonstrated on data from operational wind farms. Wind Energy Science 8(6): 893-924. https://dx.doi.org/10.5194/wes-8-893-2023, meer
- Daems, P.-J.; Peeters, C.; Matthys, J.; Verstraeten, T.; Helsen, J. (2023). Fleet-wide analytics on field data targeting condition and lifetime aspects of wind turbine drivetrains. Forschung im Ingenieurwesen-Engineering Research 87(1): 285-295. https://dx.doi.org/10.1007/s10010-023-00643-0, meer
- Nejad, A.R.; Keller, J.; Guo, Y.; Sheng, S.; Polinder, H.; Watson, S.; Dong, J.; Qin, Z.; Ebrahimi, A.; Schelenz, R.; Gutiérrez Guzmán, F.; Cornel, D.; Golafshan, R.; Jacobs, G.; Blockmans, B.; Carroll, J.; Koukoura, S.; Hart, E.; McDonald, A.; Natarajan, A.; Torsvik, J.; Moghadam, F.K.; Daems, P.-J.; Verstraeten, T.; Peeters, C.; Helsen, J. (2022). Wind turbine drivetrains: state-of-the-art technologies and future development trends. Wind Energy Science 7(1): 387-411. https://dx.doi.org/10.5194/wes-7-387-2022, meer
- Daems, P.-J.; Verstraeten, T.; Peeters, C.; Helsen, J. (2021). Effects of wake on gearbox design load cases identified from fleet-wide operational data. Forschung im Ingenieurwesen-Engineering Research 85: 553-558. https://hdl.handle.net/10.1007/s10010-021-00444-3, meer
- Verstraeten, T.; Nowe, A.; Keller, J.; Guo, Y.; Sheng, S.W.; Helsen, J. (2019). Fleetwide data-enabled reliability improvement of wind turbines. Renew. Sust. Energ. Rev. 109: 428-437. https://dx.doi.org/10.1016/j.rser.2019.03.019, meer
|
- Robbelein, K.; Daems, P.-J.; Verstraeten, T.; Noppe, N.; Weijtjens, W.; Helsen, J.; Devriendt, C. (2023). Effect of curtailment scenarios on the loads and lifetime of offshore wind turbine generator support structures. Journal of Physics: Conference Series 2507: 012013. https://dx.doi.org/10.1088/1742-6596/2507/1/012013, meer
|
- Peeters, C.; Verstraeten, T.; Nowé, A.; Daems, P.-J.; Helsen, J. (2019). Advanced vibration signal procesing using edge computing to monitor wind turbine drivetrains, in: ASME 2019 2nd International Offshore Wind Technical Conference. pp. 6, meer
|