- Willeit, M.; Ilyina, T.; Liu, B.; Heinze, C.; Perrette, M.; Heinemann, M.; Dalmonech, D.; Brovkin, V.; Munhoven, G.; Börker, J.; Hartmann, J.; Romero-Mujalli, G.; Ganopolski, A. (2023). The Earth system model CLIMBER-X v1.0 – Part 2: the global carbon cycle. Geosci. Model Dev. 16(12): 3501-3534. https://dx.doi.org/10.5194/gmd-16-3501-2023, meer
- Sulpis, O.; Agrawal, P.; Wolthers, M.; Munhoven, G.; Walker, M.; Middelburg, J. (2022). Aragonite dissolution protects calcite at the seafloor. Nature Comm. 13(1): 1104. https://dx.doi.org/10.1038/s41467-022-28711-z, meer
- Munhoven, G. (2021). Model of early diagenesis in the upper sediment with adaptable complexity - MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching. Geosci. Model Dev. 14(6): 3603-3631. https://dx.doi.org/10.5194/gmd-14-3603-2021, meer
- Köhler, P.; Munhoven, G. (2020). Late Pleistocene carbon cycle revisited by considering solid earth processes. Paleoceanography and Paleoclimatology 35(12): e2020PA004020. https://hdl.handle.net/10.1029/2020PA004020, meer
- Kurahashi-Nakamura, T.; Paul, A.; Munhoven, G.; Merkel, U.; Schulz, M. (2020). Coupling of a sediment diagenesis model (MEDUSA) and an Earth system model (CESM1.2): a contribution toward enhanced marine biogeochemical modelling and long-term climate simulations. Geosci. Model Dev. 13(2): 825-840. https://hdl.handle.net/10.5194/gmd-13-825-2020, meer
- Hülse, D.; Arndt, S.; Wilson, J.D.; Munhoven, G.; Ridgwell, A. (2017). Understanding the causes and consequences of past marine carbon cycling variability through models. Earth-Sci. Rev. 171: 349-382. https://dx.doi.org/10.1016/j.earscirev.2017.06.004, meer
- Wan, S.; Clift, P.D.; Zhao, D.; Hovius, N.; Munhoven, G.; France-Lanord, C.; Wang, Y.; Xiong, Z.; Huang, J.; Yu, Z.; Zhang, J.; Ma, W.; Zhang, G.; Li, A.; Li, T. (2017). Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: a sink for atmospheric CO2. Geochim. Cosmochim. Acta 200: 123-144. https://dx.doi.org/10.1016/j.gca.2016.12.010, meer
- Kleinen, T.; Brovkin, V.; Munhoven, G. (2016). Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian and Marine Isotope Stage (MIS) 11. Clim. Past 12(12): 2145-2160. https://dx.doi.org/10.5194/cp-12-2145-2016, meer
- Ilyina, T.; Wolf-Gladrow, D.; Munhoven, G.; Heinze, C. (2013). Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophys. Res. Lett. 40(22): 5909-5914. https://dx.doi.org/10.1002/2013GL057981, meer
- Regnier, P.; Friedlingstein, P.; Ciais, P.; Mackenzie, F.T.; Gruber, N.; Janssens, I.A.; Laruelle, G.G.; Lauerwald, R.; Luyssaert, S.; Andersson, A.J.; Arndt, S.; Arnosti, C.; Borges, A.V.; Dale, A.W.; Gallego-Sala, A.; Godderis, Y.; Goossens, N.; Hartmann, J.; Heinze, C.; Ilyina, T.; Joos, F.; LaRowe, D.E.; Leifeld, J.; Meysman, F.J.R.; Munhoven, G.; Raymond, P.A.; Spahni, R.; Suntharalingam, P.; Thullner, M. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience 6(8): 597-607. dx.doi.org/10.1038/NGEO1830, meer
- Brovkin, V.; Ganopolski, A.; Archer, D.; Munhoven, G. (2012). Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Clim. Past 8(1): 251-264. https://dx.doi.org/10.5194/cp-8-251-2012, meer
- Goosse, H.; Brovkin, V.; Fichefet, T.; Haarsma, R.; Huybrechts, P.; Jongma, J.; Mouchet, A.; Selten, F.; Barriat, P.-Y.; Campin, J.-M.; Deleersnijder, E.; Driesschaert, E.; Goelzer, H.; Janssens, I.; Loutre, M.-F.; Morales Maqueda, M.A.; Opsteegh, T.; Mathieu, P.; Munhoven, G.; Pettersson, E.J.; Renssen, H.; Roche, D.M.; Schaeffer, M.; Tartinville, B.; Timmermann, A.; Weber, S.L. (2010). Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci. Model Dev. 3(2): 603-633. https://dx.doi.org/10.5194/gmd-3-603-2010, meer
- Henrot, A.-J.; François, L.; Favre, E.; Butzin, M.; Ouberdous, M.; Munhoven, G. (2010). Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study. Clim. Past 6(5): 675-694. https://dx.doi.org/10.5194/cp-6-675-2010, meer
- Munhoven, G. (2009). Future CCD and CSH variations: Deep-sea impact of ocean acidification. Geochim. Cosmochim. Acta 73(13): A917-A917, meer
- Munhoven, G. (2007). Glacial-interglacial rain ratio changes: Implications for atmospheric CO2 and ocean-sediment interaction. Deep-Sea Res., Part II, Top. Stud. Oceanogr. 54(5-7): 722-746. dx.doi.org/10.1016/j.dsr2.2007.01.008, meer
- Riotte, J.; Godderis, Y.; Chabaux, F.; Munohven, G.; François, L.M.; Lorenz, S. (2005). Modelling the global riverine U fluxes to the oceans. Geochim. Cosmochim. Acta 69(10): A686-A686, meer
- Jones, I.W.; Munhoven, G.; Tranter, M.; Huybrechts, P.; Sharp, M.J. (2002). Modelled glacial and non-glacial HCO3-, Si and Ge fluxes since the LGM: little potential for impact on atmospheric CO2 concentrations and a potential proxy of continental chemical erosion, the marine Ge/Si ratio. Global Planet. Change 33(1-2): 139-153. http://dx.doi.org/10.1016/S0921-8181(02)00067-X, meer
- Taylor, J.; Tranter, M.; Munhoven, G. (2002). Carbon cycling and burial in the glacially influenced polar North Atlantic. Paleoceanography 17(1): 13 pp. dx.doi.org/10.1029/2001PA000644, meer
|