Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
A data-based probabilistic approach to calculate and visualise the uncertainty of flood forecasts Van Steenbergen, N.; Ronsyn, J.; Willems, P.; Van Eerdenbrugh, K. (2011). A data-based probabilistic approach to calculate and visualise the uncertainty of flood forecasts, in: Zenz, G. et al. (Ed.) Proceedings of the International Symposium UFRIM - Urban Flood Risk Management: approaches to enhance resilience of communities, 21st-23rd September 2011, Graz, Austria. pp. [1-6]
In: Zenz, G.; Hornich, R. (Ed.) (2011). Proceedings of the International Symposium UFRIM - Urban Flood Risk Management: approaches to enhance resilience of communities, 21st-23rd September 2011, Graz, Austria. Graz University of Technology. Verlag der Technischen Universität Graz: Graz. ISBN 978-3-85125-173-9. XVIII, 593 pp., meer
|
Beschikbaar in | Auteurs |
| |
Documenttype: Congresbijdrage |
Trefwoorden |
Prediction > Flood forecasting Uncertainty |
Auteurs | Top | |
Abstract |
The method consists of an error analysis on model simulation results for historical periods. The model residuals have been statistically analysed using a non parametric technique. Because the residuals depend on the value of the simulated water level and the time horizon, the residuals are split up into discrete value classes, based on the simulated water levels and different time horizons. Percentile values are calculated for the residuals and stored in a three dimensional error matrix. Based on a 3D interpolation in the error matrix, a bias correction is executed and confidence intervals on simulation results are calculated and visualised. The exceedance probabilities of alert and alarm levels are calculated and used to provide probabilistic information on the forecasts to water managers. |
Top | Auteurs |