Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
A comparison of the GWCE and mixed PNC1 – P1 formulations in finite-element linearized shallow-water models
Le Roux, D.Y.; Walters, R.; Hanert, E.; Pietrzak, J. (2012). A comparison of the GWCE and mixed PNC1 – P1 formulations in finite-element linearized shallow-water models. Int. J. Numer. Methods Fluids 68(12): 1497-1523. dx.doi.org/10.1002/fld.2540
In: International Journal for Numerical Methods in Fluids. Wiley Interscience: Chichester; New York. ISSN 0271-2091; e-ISSN 1097-0363, meer
| |
Author keywords |
shallow-water equations; generalized wave continuity equation; finiteelements; dispersion analysis; gravity waves |
Auteurs | | Top |
- Le Roux, D.Y.
- Walters, R.
- Hanert, E., meer
- Pietrzak, J.
|
|
|
Abstract |
The appearance of spurious pressure modes in early shallow-water (SW) models has resulted in two common strategies in the finite element (FE) community: using mixed primitive variable and generalized wave continuity equation (GWCE) formulations of the SW equations. One FE scheme in particular, the P1NC - P1 pair, combined with the primitive equations may be advantageously compared with the wave equation formulations and both schemes have similar data structures. Our focus here is on comparing these two approaches for a number of measures including stability, accuracy, efficiency, conservation properties, and consistency. The main part of the analysis centres on stability and accuracy results via Fourier-based dispersion analyses in the context of the linear SW equations. The numerical solutions of test problems are found to be in good agreement with the analytical results. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.