Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Sunglint Detection for Unmanned and Automated Platforms
Garaba, S.P.; Schulz, J.; Wernand, M.R.; Zielinski, O. (2012). Sunglint Detection for Unmanned and Automated Platforms. Sensors 12(9): 12545-12561. dx.doi.org/10.3390/s120912545
In: Sensors. MDPI: Basel. e-ISSN 1424-8220, meer
| |
Author keywords |
sunglint; empirical quality control; ocean colour; coastal and shelfseas; hyperspectral sensing |
Auteurs | | Top |
- Garaba, S.P.
- Schulz, J.
- Wernand, M.R., meer
- Zielinski, O.
|
|
|
Abstract |
We present an empirical quality control protocol for above-water radiometric sampling focussing on identifying sunglint situations. Using hyperspectral radiometers, measurements were taken on an automated and unmanned seaborne platform in northwest European shelf seas. In parallel, a camera system was used to capture sea surface and sky images of the investigated points. The quality control consists of meteorological flags, to mask dusk, dawn, precipitation and low light conditions, utilizing incoming solar irradiance (E-S) spectra. Using 629 from a total of 3,121 spectral measurements that passed the test conditions of the meteorological flagging, a new sunglint flag was developed. To predict sunglint conspicuous in the simultaneously available sea surface images a sunglint image detection algorithm was developed and implemented. Applying this algorithm, two sets of data, one with (having too much or detectable white pixels or sunglint) and one without sunglint (having least visible/detectable white pixel or sunglint), were derived. To identify the most effective sunglint flagging criteria we evaluated the spectral characteristics of these two data sets using water leaving radiance (L-W) and remote sensing reflectance (R-RS). Spectral conditions satisfying 'mean L-W (700-950 nm) < 2 mW.m(-2).nm(-1).Sr- 1' or alternatively 'minimum R-RS (700-950 nm) < 0.010 Sr-1', mask most measurements affected by sunglint, providing an efficient empirical flagging of sunglint in automated quality control. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.