Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Untangling spatial and temporal trends in the variability of the Black Sea Cold Intermediate Layer and mixed Layer Depth using the DIVA detrending procedure
Capet, A.; Troupin, C.; Carstensen, J.; Grégoire, M.; Beckers, J.-M. (2014). Untangling spatial and temporal trends in the variability of the Black Sea Cold Intermediate Layer and mixed Layer Depth using the DIVA detrending procedure. Ocean Dynamics 64(3): 315-324
In: Ocean Dynamics. Springer-Verlag: Berlin; Heidelberg; New York. ISSN 1616-7341; e-ISSN 1616-7228, meer
| |
Trefwoord |
|
Author keywords |
Black Sea; Data interpolation; Detrending; Inverse method; 40 degreesN-48 degrees N; 27 degrees E-42 degrees E; Cold intermediate layer;Mixed layer depth; Climatologies |
Auteurs | | Top |
- Capet, A., meer
- Troupin, C., meer
- Carstensen, J.
|
|
|
Abstract |
Current spatial interpolation products may be biased by uneven distribution of measurements in time. This manuscript presents a detrending method that recognizes and eliminates this bias. The method estimates temporal trend components in addition to the spatial structure and has been implemented within the Data Interpolating Variational Analysis (DIVA) analysis tool. The assets of this new detrending method are illustrated by producing monthly and annual climatologies of two vertical properties of the Black Sea while recognizing their seasonal and interannual variabilities : the mixed layer depth and the cold content of its cold intermediate layer (CIL). The temporal trends, given as by-products of the method, are used to analyze the seasonal and interannual variability of these variables over the past decades (1955-2011). In particular, the CIL interannual variability is related to the cumulated winter air temperature anomalies, explaining 88 % of its variation. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.