Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses Woulds, C.; Middelburg, J.J.; Cowie, G.L. (2014). Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses. Geochim. Cosmochim. Acta 136: 38-59. dx.doi.org/10.1016/j.gca.2014.02.013
In: Geochimica et Cosmochimica Acta. Elsevier: Oxford,New York etc.. ISSN 0016-7037; e-ISSN 1872-9533, meer
|
Beschikbaar in | Auteurs |
Auteurs | Top | |
|
Abstract |
Therefore this study aimed to investigate the aldose and fatty acid compositional alterations occurring to organic matter during gut passage by the abundant and ubiquitous polychaetes Hediste diversicolor and Arenicola marina, and to link these to longer-term changes typically observed during organic matter decay. This aim was approached through microcosm experiments in which selected polychaetes were fed with 13 C-labelled algal detritus, and organisms, sediments, and faecal pellets were sampled at three timepoints over similar to 6 weeks. Samples were analysed for their 13 C-labelled aldose and fatty acid contents using GC-MS and GC-IRMS. Compound-selective net accumulation of biochemicals in polychaete tissues was observed for both aldoses and fatty acids, and the patterns of this were taxon-specific. The dominant patterns included an overall loss of glucose and polyunsaturated fatty acids; and preferential preservation or production of arabinose, microbial compounds (rhamnose, fucose and microbial fatty acids), and animal-synthesised fatty acids. These patterns may have been driven by fatty acid essentiality, preferential metabolism of glucose, and A. marina grazing on bacteria. Fatty acid suites in sediments from faunated microcosms showed greater proportions of saturated fatty acids and bacterial markers than those from afaunal controls. Aldose suite alterations were similar in faunated microcosms and afaunal controls, however the impact of faunal gut passage on sedimentary aldose compositions may be observable over longer timescales. Therefore this study provides direct evidence that polychaete gut passage influences OM composition both through taxonspecific selective assimilation and retention in polychaete tissues, and also through interactions with the microbial community. (C) 2014 Published by Elsevier Ltd. |
Top | Auteurs |