Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Influence of device accuracy and choice of algorithm for species distribution modelling of seabirds: a case study using black-browed albatrosses
Quillfeldt, P.; Engler, J.O.; Silk, J.R.D.; Phillips, R.A. (2017). Influence of device accuracy and choice of algorithm for species distribution modelling of seabirds: a case study using black-browed albatrosses. J. Avian Biol. 48(12): 1549-1555. https://dx.doi.org/10.1111/jav.01238
In: Journal of Avian Biology. Munksgaard: Copenhagen. ISSN 0908-8857; e-ISSN 1600-048X, meer
| |
Auteurs | | Top |
- Quillfeldt, P.
- Engler, J.O., meer
- Silk, J.R.D.
- Phillips, R.A.
|
|
|
Abstract |
Species distribution models (SDM) based on tracking data from different devices are used increasingly to explain and predict seabird distributions. However, different tracking methods provide different data resolutions, ranging from < 10 m to > 100 km. To better understand the implications of this variation, we modeled the potential distribution of black-browed albatrosses Thalassarche melanophris from South Georgia that were simultaneously equipped with a platform terminal transmitter (PTT) (high resolution) and a global location sensor (GLS) logger (coarse resolution), and measured the overlap of the respective potential distribution for a total of nine different SDM algorithms. We found slightly better model fits for the PTT than for GLS data (AUC values 0.958 +/- 0.048 vs 0.95 +/- 0.05) across all algorithms. The overlaps of the predicted distributions were higher between device types for the same algorithm, than among algorithms for either device type. Uncertainty arising from coarse-resolution location data is therefore lower than that associated with the modeling technique. Consequently, the choice of an appropriate algorithm appears to be more important than device type when applying SDMs to seabird tracking data. Despite their low accuracy, GLS data appear to be effective for analyzing the habitat preferences and distribution patterns of pelagic species. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.