Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Conditional effects of tides and waves on short-term marsh sedimentation dynamics
Ma, Z.; Ysebaert, T.; van der Wal, D.; Herman, P.M.J. (2018). Conditional effects of tides and waves on short-term marsh sedimentation dynamics. Earth Surf. Process. Landforms 43(10): 2243-2255. https://doi.org/10.1002/esp.4357
In: Earth Surface Processes and Landforms: the Journal of the British Geomorphological Research Group. John Wiley/Wiley: Chichester, Sussex; New York. ISSN 0197-9337; e-ISSN 1096-9837, meer
| |
Author keywords |
sediment supply; deposition; suspended sediment concentration; salt marsh; wave |
Auteurs | | Top |
- Ma, Z.
- Ysebaert, T., meer
- van der Wal, D., meer
- Herman, P.M.J., meer
|
|
|
Abstract |
Salt marshes are in danger of degradation due to human impact and climate change. A thorough understanding of mechanisms controlling sedimentation and erosion in salt marshes is essential for their conservation and restoration. To understand short‐term dynamics of sediment availability and deposition around marsh edges, two contrasting marshes, Rattekaai and Sint Annaland, were studied in the Oosterschelde (southwest Netherlands). Suspended sediment concentration (SSC) was measured by siphon samplers along four transects perpendicular to the marsh edge in each marsh, during nine flood tides between March and December 2013. Each transect was comprised of four sampling sites (−10 m and −1 m on the mudflat and +1 m and +10 m on the marsh plateau, relative to the marsh edge). Sediment deposition was measured along the transects on the marsh, at +1 m and +10 m from the marsh edge, over seven c. 14‐day intervals during the same 10‐month period. Two types of sediment traps were used, one measuring gross sediment deposition (TTD – tube trap deposition) and one measuring net sediment deposition (FTD – filter trap deposition). Wave loggers were deployed 10 m away from the marsh edge on the mudflat at each marsh. The results showed that both SSC and sediment deposition varied greatly through space, both between the two marshes and within each marsh along the marsh edge. The SSC and gross sediment deposition were much higher at Rattekaai than at Sint Annaland. SSC was significantly correlated with wind speed during sampling. Sediment deposition rates (TTD and FTD) and retention ratio (FTD/TTD) were significantly correlated with cumulative wave energy during the measurement period. A conceptual model of local sediment dynamics is proposed to explain the sediment dynamics around the marsh edge. This study highlights the importance of incorporating local sediment dynamics when evaluating marsh vulnerability and stability. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.