Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Use of uncontaminated marine sediments in mortar and concrete by partial substitution of cement
Zhao, Z.; Benzerzour, M.; Abriak, N.-E.; Damidot, D.; Courard, L.; Wang, D. (2018). Use of uncontaminated marine sediments in mortar and concrete by partial substitution of cement. Cement and Concrete Composites 93: 155-162. https://dx.doi.org/10.1016/j.cemconcomp.2018.07.010
In: Cement and Concrete Composites. Elsevier: Barking. ISSN 0958-9465; e-ISSN 1873-393X, meer
| |
Trefwoord |
|
Author keywords |
Sediments; Mortar; Substitution of cement; Mechanical properties;Porosity; Concrete |
Auteurs | | Top |
- Zhao, Z., meer
- Benzerzour, M.
- Abriak, N.-E.
|
- Damidot, D.
- Courard, L., meer
- Wang, D.
|
|
Abstract |
The disposal of dredged marine sediments has become a major economic and environmental issue in the world. In this study, uncontaminated marine sediments dredged in the harbor of Dunkirk (France) were dried and ground and then used in partial substitution of cement in the manufacture of mortars and concretes. A given volume of cement has been replaced by the same volume of sediment for three substitution contents (10%, 20%, 30%) of a Portland cement CEM I 52.5. The flexural and compressive strengths of mortars decreased when the sediment replacement content increased. However, the mechanical properties of the mortar with 20% replacement of cement with sediments were better than those of a mortar made from cement CEM II/A-LL 32.5 containing a proportion of limestone similar to the sediment substitution. The total porosity measured by mercury intrusion porosimetry of different types of mortars showed that the porosity increased as the sediment substitution content increased but the pore size distribution was shifted toward smaller pores. Finally, it was demonstrated that concrete C30/37 could be designed with 20% cement replaced by sediment without the use of admixture. Additionally, this concrete fulfilled the standards with respect to the total chloride content required for unreinforced concrete. As a conclusion, dried and finely ground uncontaminated sediments appeared to be a very interesting constituent for partially substituting up to 20% of cement as its efficiency overpass limestone filler. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.