Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
A numerical study of tides in Titan's northern seas, Kraken and Ligeia Maria
Vincent, D.; Karatekin, O.; Lambrechts, J.; Lorenz, R.D.; Dehant, V.; Deleersnijder, E. (2018). A numerical study of tides in Titan's northern seas, Kraken and Ligeia Maria. Icarus 310: 105-126. https://dx.doi.org/10.1016/j.icarus.2017.12.018
In: Icarus. Elsevier. ISSN 0019-1035; e-ISSN 1090-2643, meer
| |
Author keywords |
Titan surface seas; Tides liquid body; Titan oceanography |
Auteurs | | Top |
|
- Lorenz, R.D.
- Dehant, V., meer
- Deleersnijder, E., meer
|
|
Abstract |
The tidal response of Titan's two largest northern seas, Ligeia Mare and Kraken Mare, is studied by means of a two-dimensional, depth-averaged, shallow water model, SLIM (http://www.chmate.be/slim). Kraken Mare is formed of two basins, the northern one being assumed to be linked by a single strait, Trevize Fretum, to Ligeia Mare. The tidal motions tend to be independent of each other in each basin (i.e., Ligeia Mare, Kraken 1 and Kraken 2) which results in sharp transitions in the straits. Our results are overall rather similar to those of Tokano et al. (2014), suggesting that a 2D model such as SUM is adequate for modelling Titan's tides and, since it is (presumably) less computationally demanding, may be better for sensitivity studies. For instance, the maximum tidal range in Kraken and Ligeia Maria respectively are 0.29 m and 0.14 m, which is within the range predicted by Lorenz et al. (2014) although smaller by 0.07 m and larger by 0.04 m than the estimates of Tokano et al. (2014) (but it occurs at the same location). The tidal currents are faster (by about one order of magnitude) in the straits linking those Maria than in the basins themselves (with a maximum of 0.36 m/s in the strait linking Kraken 1 and Kraken 2, Seldon Fretum). A decomposition of the tidal history into different harmonic components is carried out. Except in specific areas such as the straits and the amphidromic point(s), the main tidal component has a period of 1 Titan Day. We also briefly studied the eigenmodes of the northern seas whose period is close to the tidal period: such modes are very local. Indeed, their magnitude is significant (with respect to the magnitude of the modes elsewhere in the seas) in small bay(s) or near the islands of Kraken 2 and Ligeia Mare. They are not excited by the tides as they do not appear in the tidal motion. A sensitivity analysis to poorly constrained parameters (bottom friction coefficient, depth of Trevize Fretum and attenuation factor - the latter is briefly discussed with respect to the values of the Love numbers found in the literature) is also conducted. The model parameters are seen to have a significant impact on the liquid exchanges between the basins and, consequently, on the tidal range and phase, fluid velocity and location of amphidromic point(s). |
IMIS is ontwikkeld en wordt gehost door het VLIZ.