Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Workflow for analysis of compositional data in sedimentary petrology: provenance changes in sedimentary basins from spatio-temporal variation in heavy-mineral assemblages
Verhaegen, J.; Weltje, G.J.; Munsterman, D. (2019). Workflow for analysis of compositional data in sedimentary petrology: provenance changes in sedimentary basins from spatio-temporal variation in heavy-mineral assemblages. Geol. Mag. 156(7): 1111-1130. https://dx.doi.org/10.1017/S0016756818000584
In: Geological Magazine. Cambridge University Press: London. ISSN 0016-7568; e-ISSN 1469-5081, meer
| |
Trefwoord |
|
Author keywords |
Multivariate statistics; data analysis; palaeogeography; Miocene;Neogene; North Sea Basin |
Auteurs | | Top |
- Verhaegen, J., meer
- Weltje, G.J., meer
- Munsterman, D.
|
|
|
Abstract |
The field of provenance analysis has seen a revival in the last decade as quantitative data-acquisition techniques continue to develop. In the 20th century, many heavy-mineral data were collected. These data were mostly used as qualitative indications for stratigraphy and provenance, and not incorporated in a quantitative provenance methodology. Even today, such data are mostly only used in classic data tables or cumulative heavy-mineral plots as a qualitative indication of variation. The main obstacle to rigorous statistical analysis is the compositional nature of these data which makes them unfit for standard multivariate statistics. To gain more information from legacy data, a straightforward workflow for quantitative analysis of compositional datasets is provided. First (1) a centred log-ratio transformation of the data is carried out to fix the constant-sum constraint and non-negativity of the compositional data. Next, (2) cluster analysis is followed by (3) principal component analysis and (4) bivariate log-ratio plots. Several (5) proxies for the effects of sorting and weathering are included to check the provenance significance of observed variations and finally a (6) spatial interpolation of a provenance proxy extracted from the dataset can be carried out. To test this methodology, available heavy-mineral data from the southern edge of the Miocene North Sea Basin are analysed. The results are compared with available information from literature and are used to gain improved insight into Miocene sediment input variations in the study area. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.