Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling
Nossent, J.; Bauwens, W. (2012). Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Wat. Sci. Tech. 65(3): 539-549. https://dx.doi.org/10.2166/wst.2012.884
In: Water Science and Technology. IWA Publishing: Oxford. ISSN 0273-1223; e-ISSN 1996-9732, meer
| |
Author keywords |
environmental modeling, integrated modeling, Latin-Hypercube–One-factor-At-a-Time, model parameters, sensitivity analysis, SWAT |
Abstract |
Environmental models are often over-parameterized. A sensitivity analysis can identify influential model parameters for, e.g. the parameter estimation process, model development, research prioritization and so on. This paper presents the results of an extensive study of the Latin-Hypercube– One-factor-At-a-Time (LH-OAT) procedure applied to the Soil and Water Assessment Tool (SWAT). The LH-OAT is a sensitivity analysis method that can be categorized as a screening method. The results of the sensitivity analyses for all output variables indicate that the SWAT model of the river Kleine Nete is mainly sensitive to flow related parameters. Rarely, water quality parameters get a high priority ranking. It is observed that the number of intervals used for the Latin-Hypercube sampling should be sufficiently high to achieve converged parameter rankings. Additionally, it is noted that the LH-OAT method can enhance the understanding of the model, e.g. on the use of water quality input data. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.