Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Sensitivity of a coarse‐resolution global ocean model to a spatially variable neutral diffusivity Holmes, R.M.; Groeskamp, S.; Stewart, K.D.; McDougall, T.J. (2022). Sensitivity of a coarse‐resolution global ocean model to a spatially variable neutral diffusivity. J. Adv. Model. Earth Syst. 14(3): e2021MS002914. https://dx.doi.org/10.1029/2021ms002914
Bijhorende data:
In: Journal of Advances in Modeling Earth Systems. American Geophysical Union: Washington. e-ISSN 1942-2466, meer
|
Beschikbaar in | Auteurs |
Auteurs | Top | |
|
Abstract |
Motivated by recent advances in mapping mesoscale eddy tracer mixing in the ocean we evaluate the sensitivity of a coarse-resolution global ocean modelto a spatially variable neutral diffusion coefficient κ n(x, y, z). We gradually introduce physically motivated models for the horizontal (mixing lengththeory) and vertical (surface mode theory) structure of κn along with suppression of mixing by mean flows. Each structural feature influences the ocean's hydrography and circulation to varying extents, with the suppression of mixing by mean flows being the most important factor and the vertical structure being relatively unimportant. When utilizing the full theory (experiment “FULL”) the interhemispheric overturning cell is strengthened by 2 Sv at 26°N (a ∼20% increase), bringing it into better agreement with observations. Zonal mean tracer biases are also reduced in FULL. Neutral diffusion impacts circulation through surface temperature-induced changes in surface buoyancy fluxes and nonlinear equation of state effects. Surface buoyancy forcing anomalies are largest in the Southern Ocean where a decreased neutral diffusivity in FULL leads to surface cooling and enhanced dense-to-light surface water mass transformation, reinforced by reductions in cabbeling and thermobaricity. The increased water mass transformation leads to enhanced midlatitude stratification and interhemispheric overturning. The spatial structure for κn in FULL is important as it enhances the interhemispheric cell without degrading the Antarctic bottom water cell, unlike a spatially uniform reduction in κn.These results highlight the sensitivity of modeled circulation to κn and motivate the use of physics-based models for its structure. |
Top | Auteurs |