Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Opportunities and limitations of large open biodiversity occurrence databases in the context of a Marine Ecosystem Assessment of the Southern Ocean
Bonnet-Lebrun, A.-S.; Sweetlove, M.; Griffiths, H.J.; Sumner, M.; Provoost, P.; Raymond, B.; Ropert-Coudert, Y.; Van de Putte, A. (2023). Opportunities and limitations of large open biodiversity occurrence databases in the context of a Marine Ecosystem Assessment of the Southern Ocean. Front. Mar. Sci. 10: 1150603. https://dx.doi.org/10.3389/fmars.2023.1150603
In: Frontiers in Marine Science. Frontiers Media: Lausanne. e-ISSN 2296-7745, meer
| |
Auteurs | | Top |
- Bonnet-Lebrun, A.-S.
- Sweetlove, M.
- Griffiths, H.J.
- Sumner, M.
|
- Provoost, P., meer
- Raymond, B.
- Ropert-Coudert, Y.
- Van de Putte, A., meer
|
|
Abstract |
The Southern Ocean is a productive and biodiverse region, but it is also threatened by anthropogenic pressures. Protecting the Southern Ocean should start with well-informed Marine Ecosystem Assessments of the Southern Ocean (MEASO) being performed, a process that will require biodiversity data. In this context, open geospatial biodiversity databases such as OBIS and GBIF provide good avenues, through aggregated geo-referenced taxon locations. However, like most aggregated databases, these might suffer from sampling biases, which may hinder their usability for a MEASO. Here, we assess the quality and distribution of OBIS and GBIF data in the context of a MEASO. We found strong spatial, temporal and taxonomic biases in these data, with several biases likely emerging from the remoteness and inaccessibility of the Southern Ocean (e.g., lack of data in the dark and ice-covered winter, most data describing charismatic or well-known taxa, and most data along ship routes between research stations and neighboring continents). Our identification of sampling biases helps us provide practical recommendations for future data collection, mobilization, and analyses. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.