Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Multivariate versus machine learning-based classification of rapid evaporative Ionisation mass spectrometry spectra towards industry based large-scale fish speciation
De Graeve, M.; Birse, N.; Hong, Y.H.; Elliott, C.T.; Hemeryck, L.Y.; Vanhaecke, L. (2023). Multivariate versus machine learning-based classification of rapid evaporative Ionisation mass spectrometry spectra towards industry based large-scale fish speciation. Food Chemistry 404(Part B): 134632. https://dx.doi.org/10.1016/j.foodchem.2022.134632
In: Food Chemistry. Elsevier: London. ISSN 0308-8146; e-ISSN 1873-7072, meer
| |
Author keywords |
Ambient Ionisation Mass Spectrometry; Multivariate Chemometric Modelling; Machine Learning; Fish Speciation; Real-time Prediction; Metabolomics |
Auteurs | | Top |
- De Graeve, M., meer
- Birse, N.
- Hong, Y.H.
|
- Elliott, C.T.
- Hemeryck, L.Y., meer
- Vanhaecke, L., meer
|
|
Abstract |
Detection and prevention of fish food fraud are of ever-increasing importance, prompting the need for rapid, high-throughput fish speciation techniques. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) has quickly established itself as a powerful technique for the instant in situ analysis of foodstuffs. In the current study, a total of 1736 samples (2015-2021) -comprising 17 different commercially valuable fish species -were ana-lysed using iKnife-REIMS, followed by classification with various multivariate and machine learning strategies. The results demonstrated that multivariate models, i.e. PCA-LDA and (O)PLS-DA, delivered accuracies from 92.5 to 100.0%, while RF and SVM-based classification generated accuracies from 88.7 to 96.3%. Real-time recog-nition on a separate test set of 432 samples (2022) generated correct speciation between 89.6 and 99.5% for the multivariate models, while the ML models underperformed (22.3-95.1%), in particular for the white fish species. As such, we propose a real-time validated modelling strategy using directly amenable PCA-LDA for rapid industry-proof large-scale fish speciation. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.