Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
10,000-h-stable intermittent alkaline seawater electrolysis
Sha, Q.; Wang, S.; Yan, L.; Feng, Y.; Zhang, Z.; Li, S.; Guo, X.; Li, T.; Li, H.; Zhuang, Z.; Zhou, D.; Liu, B.; Sun, X. (2025). 10,000-h-stable intermittent alkaline seawater electrolysis. Nature (Lond.) 639(8054): 360-367. https://dx.doi.org/10.1038/s41586-025-08610-1
In: Nature: International Weekly Journal of Science. Nature Publishing Group: London. ISSN 0028-0836; e-ISSN 1476-4687, meer
| |
Auteurs | | Top |
- Sha, Q.
- Wang, S.
- Yan, L.
- Feng, Y.
- Zhang, Z.
|
- Li, S.
- Guo, X.
- Li, T.
- Li, H.
|
- Zhuang, Z.
- Zhou, D.
- Liu, B., meer
- Sun, X.
|
Abstract |
Seawater electrolysis powered by renewable electricity provides an attractive strategy for producing green hydrogen1,2,3,4,5. However, direct seawater electrolysis faces many challenges, primarily arising from corrosion and competing reactions at the anode caused by the abundance of halide ions (Cl−, Br−) in seawater6. Previous studies3,6,7,8,9,10,11,12,13,14 on seawater electrolysis have mainly focused on the anode development, because the cathode operates at reducing potentials, which is not subject to electrode dissolution or chloride corrosion reactions during seawater electrolysis11,15. However, renewable energy sources are intermittent, variable and random, which cause frequent start–shutdown operations if renewable electricity is used to drive seawater electrolysis. Here we first unveil dynamic evolution and degradation of seawater splitting cathode in intermittent electrolysis and, accordingly, propose construction of a catalyst’s passivation layer to maintain the hydrogen evolution performance during operation. An in situ-formed phosphate passivation layer on the surface of NiCoP–Cr2O3 cathode can effectively protect metal active sites against oxidation during frequent discharge processes and repel halide ion adsorption on the cathode during shutdown conditions. We demonstrate that electrodes optimized using this design strategy can withstand fluctuating operation at 0.5 A cm−2 for 10,000 h in alkaline seawater, with a voltage increase rate of only 0.5% khr−1. The newly discovered challenge and our proposed strategy herein offer new insights to facilitate the development of practical seawater splitting technologies powered by renewable electricity. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.