Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
one publication added to basket [60001] |
Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression
Ysebaert, T.J.; Meire, P.; Herman, P.M.J.; Verbeek, H. (2002). Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Mar. Ecol. Prog. Ser. 225: 79-95. dx.doi.org/10.3354/meps225079
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, meer
| |
Trefwoord |
|
Author keywords |
benthic macrofauna; estuarine; spatial gradients; logistic regression; response surfaces; schelde estuary |
Auteurs | | Top |
- Ysebaert, T.J.
- Meire, P.
- Herman, P.M.J.
- Verbeek, H.
|
|
|
Abstract |
This study aims at contributing to the development of statistical models to predict macrobenthic species response to environmental conditions in estuarine ecosystems. Ecological response surfaces are derived for 10 estuarine macrobenthic species. Logistic regression is applied on a large data set, predicting the probability of occurrence of macrobenthic species in the Schelde estuary as a response to the predictor variables salinity, depth, current velocity and sediment characteristics. Single logistic regression provides good descriptions of the occurrence along 1 environmental variable. The response surfaces obtained by multiple logistic regression provide estimates of the probability of species occurrence across the spatial extent of the Schelde estuary with a relatively high degree of success. Results from subsampling 50 % of the original data 10 times indicate that final models were stable. A visual geographical comparison is presented between the mapped probability surfaces and the species occurrence maps. We conclude that where patterns of distribution are strongly and directly coupled to physicochemical processes, as is the case at the estuarine macro- and meso-scale, our modelling approach was capable of predicting macrobenthic species distributions with a relatively high degree of success, although processes controlling estuarine macrobenthic distribution cannot be determined using this method. However, the models and predictions could be used for evaluation of the effects of different management schemes within the Schelde estuary. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.