Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Big data and machine learning techniques to improve the forecast of water levels Bokungu, J. (2020). Big data and machine learning techniques to improve the forecast of water levels. MSc Thesis. VUB: Brussels. 82 pp.
|
Thesis info:
|
Beschikbaar in | Auteurs |
| |
Documenttype: Doctoraat/Thesis/Eindwerk |
Auteurs | Top | |
|
Abstract |
Due to climate change and global warming, floods are more likely to increase both in size and frequency. In Antwerp, water levels may be influenced by other factors, such as the water levels in Vlissingen, wind direction, wind speed, water temperature, water discharge, air pressure and air temperature. In this thesis, we study multivariate and multi-step deep learning models using Long short-term memory (LSTM) for half-hourly water levels prediction. We investigate 6 architectures of LSTM networks and combine them with standard feedforward neural networks (convolutional neural networks). We use previous week meteorological data to predict water levels up to 24 hours ahead. The presented models are multi-site, and thus, able to make water level predictions for different sites, simultaneously. Two statistical evaluation parameters, namely, the mean absolute error and the root mean square error are used to assess how the models perform. We compared our models to a baseline univariate statistical model (ARIMA). The results show that the ARIMA model performs as well as the deep learning models. Then, we decided to enlarge our sample of data and compared the ARIMA model with our best-performing deep learning model. The deep learning model significantly provided better results. |
Top | Auteurs |