Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [215874] |
A sequential Bayesian approach to vertical slice tomography of a shallow water environment
Carrière, O.; Hermand, J.-P. (2008). A sequential Bayesian approach to vertical slice tomography of a shallow water environment. J. Acoust. Soc. Am. 123(5): 3339. dx.doi.org/10.1121/1.2933874
In: The Journal of the Acoustical Society of America. American Institute of Physics: New York. ISSN 0001-4966; e-ISSN 1520-8524, meer
| |
Beschikbaar in | Auteurs |
|
Documenttype: Samenvatting
|
Abstract |
A major challenge of acoustic tomography in shallow water environments is to track physical features that are highly variable in time and space and to properly account for sound interaction with the subbottom. In a previous work an extended Kalman filter (EKF) scheme was proposed to track the sound-speed field variations in a vertical slice of the water column for known bottom geoacoustic parameters. Although the results were encouraging, it was shown that some biases were encountered when using the standard EKF, principally because of the high nonlinearity between the observations (the multi-frequency pressure field) and the environmental parameters (here the sound-speed field). In this paper, we show that Ensemble Kalman or sequential Monte Carlo filtering significantly enhance the estimation of the sound-speed field, for both range-independent and range-dependent cases. Reproducible results show that the temporal variations are well tracked, even in presence of measurement noise and model uncertainty. Furthermore the sampling approach allows to increase the time interval between successive measurements, which is an advantage from an operational viewpoint. The performances of the different nonlinear filters are also discussed. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.