Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [216148] |
An explicit Discontinuous-Galerkin surface-subsurface water flow model
De Maet, T. (2011). An explicit Discontinuous-Galerkin surface-subsurface water flow model, in: Hogge, M. et al. Proceedings of the 5th International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2011), 14-17 November 2011, Liège, Belgium. pp. 11 pp.
In: Hogge, M. et al. (Ed.) (2011). Proceedings of the 5th International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2011), 14-17 November 2011, Liège, Belgium. Université Catholique de Louvain/Université de Liège/Universiteit Gent: Leuven. ISBN 978-2-9601143-1-7. 1 CD-ROM pp., meer
|
Beschikbaar in | Auteur |
|
Documenttype: Samenvatting
|
Abstract |
In this paper, we present a terrestrial hydrological model that explicitly couples the subsurface and surface hydrodynamics. The use of an explicit time integration scheme allows for an optimal par- allel scaling and an efficient coupling between surface and subsurface components. The saturated- unsaturated subsurface module solves Richards equation with a mixed discontinuous-Galerkin (DG) finite element formulation, using both the pressure head h and the water content ? as prognostic vari- ables. ? is used for the unsaturated zone, where it is know to be more efficient, and h is used for the saturated zone, where ? is constant. In the saturated zone, an un-converged false transient method is used in order to replace the elliptic equation by a parabolic one. To allow physical discontinuities between different types of soils, we make use of a modified jump term in the DG formulation for the variable ?. The diffusive wave approximation is applied to the shallow water equation for surface flows including runoff, lakes and small rivers. The surface-subsurface coupling is ensured through a flux continuity constraint The latter is determined by the subsurface model for which a Dirichlet boundary condition is applied, equalizing surface and subsurface pressures. The resulting model is robust and fully conservative. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.