Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [227500] |
A fish-based index of estuarine ecological quality incorporating information from both scientific fish survey and experts knowledge
Tableau, A.; Drouineau, H.; Delpech, C.; Pierre, M.; Lobry, J.; Le Pape, O.; Breine, J.; Lepage, M. (2013). A fish-based index of estuarine ecological quality incorporating information from both scientific fish survey and experts knowledge. Ecol. Indic. 32: 147-156. http://dx.doi.org/10.1016/j.ecolind.2013.03.030
In: Ecological Indicators. Elsevier: Shannon. ISSN 1470-160X; e-ISSN 1872-7034, meer
| |
Trefwoorden |
|
Author keywords |
Anthropogenic pressure; Bayesian method; Expert judgement; Multimetric fish-based indicator; Prior information; Water Framework Directive |
Auteurs | | Top |
- Tableau, A.
- Drouineau, H.
- Delpech, C.
- Pierre, M.
|
- Lobry, J.
- Le Pape, O.
- Breine, J., meer
- Lepage, M.
|
|
Abstract |
In the Water Framework Directive (European Union) context, a multimetric fish based index is required to assess the ecological status of French estuarine water bodies. A first indicator called ELFI was developed, however similarly to most indicators, the method to combine the core metrics was rather subjective and this indicator does not provide uncertainty assessment. Recently, a Bayesian method to build indicators was developed and appeared relevant to select metrics sensitive to global anthropogenic pressure, to combine them objectively in an index and to provide a measure of uncertainty around the diagnostic. Moreover, the Bayesian framework is especially well adapted to integrate knowledge and information not included in surveys data. In this context, the present study used this Bayesian method to build a multimetric fish based index of ecological quality accounting for experts knowledge. The first step consisted in elaborating a questionnaire to collect assessments from different experts then in building relevant priors to summarize those assessments for each water body. Then, these priors were combined with surveys data in the index to complement the diagnosis of quality. Finally, a comparison between diagnoses using only fish data and using both information sources underlined experts knowledge contribution. Regarding the results, 68% of the diagnosis matched demonstrating that including experts knowledge thanks to the Bayesian framework confirmed or slightly modified the diagnosis provided by survey data but influenced uncertainty around the diagnostic and appeared especially relevant in terms of risk management. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.