Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [238220] |
Adaptive time stepping algorithm for Lagrangian transport models: theory and idealised test cases
Shah, S.H.A.M.; Heemink, A.W.; Grawe, U.; Deleersnijder, E. (2013). Adaptive time stepping algorithm for Lagrangian transport models: theory and idealised test cases. Ocean Modelling 68: 9-21. dx.doi.org/10.1016/j.ocemod.2013.04.001
In: Ocean Modelling. Elsevier: Oxford. ISSN 1463-5003; e-ISSN 1463-5011, meer
| |
Trefwoord |
|
Author keywords |
Lagrangian modelling; Non-flat isopycnal surfaces; Shallow-sea model;Vertical diffusivity; Stochastic differential equations |
Auteurs | | Top |
- Shah, S.H.A.M.
- Heemink, A.W.
- Grawe, U.
- Deleersnijder, E., meer
|
|
|
Abstract |
Random walk simulations have an excellent potential in marine and oceanic modelling. This is essentially due to their relative simplicity and their ability to represent advective transport without being plagued by the deficiencies of the Eulerian methods. The physical and mathematical foundations of random walk modelling of turbulent diffusion have become solid over the years. Random walk models rest on the theory of stochastic differential equations. Unfortunately, the latter and the related numerical aspects have not attracted much attention in the oceanic modelling community. The main goal of this paper is to help bridge the gap by developing an efficient adaptive time stepping algorithm for random walk models. Its performance is examined on two idealised test cases of turbulent dispersion; (i) pycnocline crossing and (ii) non-flat isopycnal diffusion, which are inspired by shallow-sea dynamics and large-scale ocean transport processes, respectively. The numerical results of the adaptive time stepping algorithm are compared with the fixed-time increment Milstein scheme, showing that the adaptive time stepping algorithm for Lagrangian random walk models is more efficient than its fixed step-size counterpart without any loss in accuracy. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.