Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [256749] |
Flux balance analysis of primary metabolism in the diatom Phaeodactylum tricornutum
Kim, J; Fabris, M.; Baart, G.; Kim, K; Goossens, A.; Vyverman, W.; Falkowski, G; Lun, S (2016). Flux balance analysis of primary metabolism in the diatom Phaeodactylum tricornutum. Plant J. 85(1): 161-176. dx.doi.org/10.1111/tpj.13081
In: The plant journal. Blackwell Publishing: York. ISSN 0960-7412; e-ISSN 1365-313X, meer
| |
Trefwoorden |
Phaeodactylum tricornutum Bohlin, 1897 [WoRMS] Marien/Kust |
Author keywords |
Phaeodactylum tricornutum; computational model; intermediate metabolism;glycolysis; ancient eukaryotic metabolism; biofuels |
Auteurs | | Top |
- Kim, J.
- Fabris, M., meer
- Baart, G., meer
- Kim, M.
|
- Goossens, A., meer
- Vyverman, W., meer
- Falkowski, P.
- Lun, D.
|
|
Abstract |
Diatoms (Bacillarophyceae) are photosynthetic unicellular microalgae that have risen to ecological prominence in oceans over the past 30 million years. They are of interest as potential feedstocks for sustainable biofuels. Maximizing production of these feedstocks will require genetic modifications and an understanding of algal metabolism. These processes may benefit from genome-scale models, which predict intracellular fluxes and theoretical yields, as well as the viability of knockout and knock-in transformants. Here we present a genome-scale metabolic model of a fully sequenced and transformable diatom: Phaeodactylum tricornutum. The metabolic network was constructed using the P. tricornutum genome, biochemical literature, and online bioinformatic databases. Intracellular fluxes in P. tricornutum were calculated for autotrophic, mixotrophic and heterotrophic growth conditions, as well as knockout conditions that explore the in silico role of glycolytic enzymes in the mitochondrion. The flux distribution for lower glycolysis in the mitochondrion depended on which transporters for TCA cycle metabolites were included in the model. The growth rate predictions were validated against experimental data obtained using chemostats. Two published studies on this organism were used to validate model predictions for cyclic electron flow under autotrophic conditions, and fluxes through the phosphoketolase, glycine and serine synthesis pathways under mixotrophic conditions. Several gaps in annotation were also identified. The model also explored unusual features of diatom metabolism, such as the presence of lower glycolysis pathways in the mitochondrion, as well as differences between P. tricornutum and other photosynthetic organisms. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.