Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [291565] |
A methodology to model environmental preferences of EPT taxa in the Machangara river basin (Ecuador)
Jerves-Cobo, R.; Everaert, G.; Iñiguez-Vela, X.; Córdova-Vela, G.; Díaz-Granda, C.; Cisneros, F.; Nopens, I.; Goethals, P.L.M. (2017). A methodology to model environmental preferences of EPT taxa in the Machangara river basin (Ecuador). Water 9(3): 195. https://dx.doi.org/10.3390/w9030195
In: Water. MDPI: Basel. e-ISSN 2073-4441, meer
| |
Trefwoord |
|
Author keywords |
generalized linear models; predictive models; decision support in water management; generalized linear modeling |
Auteurs | | Top |
- Jerves-Cobo, R., meer
- Everaert, G., meer
- Iñiguez-Vela, X.
- Córdova-Vela, G.
|
- Díaz-Granda, C.
- Cisneros, F.
- Nopens, I., meer
- Goethals, P.L.M., meer
|
|
Abstract |
Rivers have been frequently assessed based on the presence of the Ephemeroptera— Plecoptera—Trichoptera (EPT) taxa in order to determine the water quality status and develop conservation programs. This research evaluates the abiotic preferences of three families of the EPT taxa Baetidae, Leptoceridae and Perlidae in the Machangara River Basin located in the southern Andes of Ecuador. With this objective, using generalized linear models (GLMs), we analyzed the relation between the probability of occurrence of these pollution-sensitive macroinvertebrates families and physicochemical water quality conditions. The explanatory variables of the constructed GLMs differed substantially among the taxa, as did the preference range of the common predictors. In total, eight variables had a substantial influence on the outcomes of the three models. For choosing the best predictors of each studied taxa and for evaluation of the accuracy of its models, the Akaike information criterion (AIC) was used. The results indicated that the GLMs can be applied to predict either the presence or the absence of the invertebrate taxa and moreover, to clarify the relation to the environmental conditions of the stream. In this manner, these modeling tools can help to determine key variables for river restoration and protection management. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.