Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [295838] |
Online distributed voltage control of an offshore MIdc network using reinforcement learning
Rodrigues, S.; Pinto, R.T.; Bauer, P.; Brys, T.; Nowé, A. (2015). Online distributed voltage control of an offshore MIdc network using reinforcement learning, in: 2015 IEEE Congress on Evolutionary Computation (CEC): proceedings. pp. 1769-1775. https://dx.doi.org/10.1109/CEC.2015.7257101
In: (2015). 2015 IEEE Congress on Evolutionary Computation (CEC): proceedings . IEEE: [s.l.]. ISBN 978-1-4799-7492-4. , meer
|
Beschikbaar in | Auteurs |
|
Documenttype: Congresbijdrage
|
Auteurs | | Top |
- Rodrigues, S.
- Pinto, R.T.
- Bauer, P.
|
|
|
Abstract |
This paper addresses one of the main challenges on the way to an offshore transnational multi-terminal dc (MTdc) network: its control and operation. The main objective is to demonstrate the feasibility of using reinforcement learning (RL) techniques to control, in real time, a multi-terminal dc network aimed at integrating offshore wind farms (OWFs). This method of controlling MTdc networks using RL techniques is called Online Distributed Voltage Control (ODVC). The ODVC strategy uses Continuous Action Reinforcement Learning Automata (CARLA) to optimize power flows in real time. To validate the effectiveness of the proposed control method, dynamic simulations are carried out using a MTdc grid model composed of six nodes, interconnecting three offshore wind farms to three European countries. The results obtained demonstrate the advantages of implementing an online distributed voltage control strategy to obtain feasible controlled power flows with low transmission losses. The results obtained demonstrate the feasibility of the proposed method to control, in real time, MTdc networks and that the RL techniques are well-suited for this problem due to their inherent advantages of coping with stochastic environments. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.