Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [307849] |
Towards an efficient and highly accurate coupled numerical modelling approach for wave interactions with a dike on a very shallow foreshore
Vandebeek, I.; Gruwez, V.; Altomare, C.; Vanneste, D.; De Roo, S.; Toorman, E.; Troch, P. (2018). Towards an efficient and highly accurate coupled numerical modelling approach for wave interactions with a dike on a very shallow foreshore, in: Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab18), Santander, Spain, May 22-26, 2018. pp. [1-10]
In: (2018). Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab18), Santander, Spain, May 22-26, 2018. [S.n.]: [s.l.]. , meer
|
Beschikbaar in | Auteurs |
|
Documenttype: Congresbijdrage
|
Author keywords |
Numerical modelling; Wave-induced loading; Beach morphodynamics; Shallow foreshores |
Abstract |
An accurate prediction of wave overtopping over the crest of coastal structures and wave-induced loading is essential to guarantee coastal safety. Due to the presence of a very shallow foreshore at the Belgian coast, this is not straightforward. Within the CREST project, a numerical model is being developed to accurately predict these wave interactions with structures on a very shallow foreshore. Sediment transport in front of the structure as well as the wave structure interactions are simulated with the open-source CFD software OpenFOAM. Wave propagation over the beach until the wave breaking point is modelled with SWASH, a model based on the non-linear shallow water equations in order to limit the computational cost. A one-way coupling methodology between these two models is proposed. The capability of OpenFOAM as stand-alone model to accurately predict wave loading forces on buildings for a case with a very shallow foreshore is demonstrated by comparing the numerical results to experimental data. The ability of OpenFOAM to simulate scour processes is validated by experimental data of a submerged jet flow over an apron. Furthermore, a first test case with the coupled OpenFOAM-SWASH model presenting the propagation of regular waves is described. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.