Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [312706] |
Cross-shore suspended sediment transport in relation to topographic changes in the intertidal zone of a macro-tidal beach (Mariakerke, Belgium)
Brand, E.; De Sloover, L.; De Wulf, A.; Montreuil, A.-L.; Vos, S.; Chen, M. (2019). Cross-shore suspended sediment transport in relation to topographic changes in the intertidal zone of a macro-tidal beach (Mariakerke, Belgium). J. Mar. Sci. Eng. 7(6): 172. https://dx.doi.org/10.3390/jmse7060172
In: Journal of Marine Science and Engineering. MDPI: Basel. ISSN 2077-1312; e-ISSN 2077-1312, meer
| |
Trefwoord |
|
Author keywords |
morphodynamics; sediment mixing; tidal currents; permanent terrestrial laser scanning; acoustic backscatter |
Auteurs | | Top |
|
- Montreuil, A.-L., meer
- Vos, S.
- Chen, M., meer
|
|
Abstract |
Sediment transport is a key element in intertidal beach morphodynamics, but measurements of sediment transport are often unreliable. The aim of this study is to quantify and investigate cross-shore sediment transport and the resulting topographic changes for a tide-dominated, sandy beach. Two fortnight-long field experiments were carried out during which hydrodynamics and sediment dynamics were measured with optical and acoustic sensors, while the beach topography was surveyed with a permanent terrestrial laser scanner. Suspended sediment was generally well-mixed and currents were largest at approximately 1.5 m above the bed, which resulted in a peak in sediment transport at 1/3 of the high tide level. The mean transport direction was onshore during calm conditions (wave height <0.6 m) thanks to tidal currents and offshore during energetic conditions due to undertow. Oscillatory transport was always onshore because of wave asymmetry but it was subordinate to mean transport. The intertidal zone showed an alternation of erosion and accretion with formation of morphological features during energetic (no storm) conditionsand smoothening of the morphology during calm conditions. A good qualitative and quantitative agreement was found between the daily cross-shore suspended load and beach volume changes, especially during calm conditions. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.