Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [320670] |
Scaling of swimming performance in baleen whales
Gough, W.T.; Segre, P.S.; Bierlich, K.C.; Cade, D.E.; Potvin, J.; Fish, F.E.; Dale, J.; di Clemente, J.; Friedlaender, A.S.; Johnston, D.W.; Kahane-Rapport, S.R.; Kennedy, J.; Long, J.H.; Oudejans, M.; Penry, G.; Savoca, M.S.; Simon, M.; Videsen, S.K.A.; Visser, F.; Wiley, D.N.; Goldbogen, J.A. (2019). Scaling of swimming performance in baleen whales. J. Exp. Biol. 222(20): jeb204172. https://dx.doi.org/10.1242/jeb.204172
In: The Journal of Experimental Biology. Cambridge University Press: London. ISSN 0022-0949; e-ISSN 1477-9145, meer
| |
Author keywords |
Morphometrics; Hydrodynamic modeling; Unoccupied aerial systems; Locomotion; Frequency; Speed |
Abstract |
The scale dependence of locomotor factors has long been studied in comparative biomechanics, but remains poorly understood for animals at the upper extremes of body size. Rorqual baleen whales include the largest animals, but we lack basic kinematic data about their movements and behavior below the ocean surface. Here, we combined morphometrics from aerial drone photogrammetry, whale-borne inertial sensing tag data and hydrodynamic modeling to study the locomotion of five rorqual species. We quantified changes in tail oscillatory frequency and cruising speed for individual whales spanning a threefold variation in body length, corresponding to an order of magnitude variation in estimated body mass. Our results showed that oscillatory frequency decreases with body length (∝length−0.53) while cruising speed remains roughly invariant (∝length0.08) at 2 m s−1. We compared these measured results for oscillatory frequency against simplified models of an oscillating cantilever beam (∝length−1) and an optimized oscillating Strouhal vortex generator (∝length−1). The difference between our length-scaling exponent and the simplified models suggests that animals are often swimming non-optimally in order to feed or perform other routine behaviors. Cruising speed aligned more closely with an estimate of the optimal speed required to minimize the energetic cost of swimming (∝length0.07). Our results are among the first to elucidate the relationships between both oscillatory frequency and cruising speed and body size for free-swimming animals at the largest scale. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.