Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [323768] |
Finding plastic patches in coastal waters using optical satellite data
Biermann, L.; Clewley, D.; Martinez-Vicente, V.; Topouzelis, K. (2020). Finding plastic patches in coastal waters using optical satellite data. NPG Scientific Reports 10(1): 10 pp. https://dx.doi.org/10.1038/s41598-020-62298-z
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, meer
| |
Auteurs | | Top |
- Biermann, L.
- Clewley, D.
- Martinez-Vicente, V., meer
- Topouzelis, K.
|
|
|
Abstract |
Satellites collecting optical data offer a unique perspective from which to observe the problem of plastic litter in the marine environment, but few studies have successfully demonstrated their use for this purpose. For the first time, we show that patches of floating macroplastics are detectable in optical data acquired by the European Space Agency (ESA) Sentinel-2 satellites and, furthermore, are distinguishable from naturally occurring materials such as seaweed. We present case studies from four countries where suspected macroplastics were detected in Sentinel-2 Earth Observation data. Patches of materials on the ocean surface were highlighted using a novel Floating Debris Index (FDI) developed for the Sentinel-2 Multi-Spectral Instrument (MSI). In all cases, floating aggregations were detectable on sub-pixel scales, and appeared to be composed of a mix of seaweed, sea foam, and macroplastics. Building first steps toward a future monitoring system, we leveraged spectral shape to identify macroplastics, and a Naïve Bayes algorithm to classify mixed materials. Suspected plastics were successfully classified as plastics with an accuracy of 86%. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.