Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [338153] |
State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems
Vetra-Carvalho, S.; Van Leeuwen, P.J.; Nerger, L.; Barth, A.; Altaf, M.U.; Brasseur, P.; Kirchgessner, P.; Beckers, J.-M. (2018). State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems. Tellus, Ser. A, Dyn. meteorol. oceanogr. 70(1): 1-43. https://hdl.handle.net/10.1080/16000870.2018.1445364
In: Tellus. Series A: Dynamic Meteorology and Oceanography. Blackwell: Copenhagen. ISSN 0280-6495; e-ISSN 1600-0870, meer
| |
Author keywords |
ensemble Kalman filter; particle filter; data assimilation; high dimension; non Gaussian |
Auteurs | | Top |
- Vetra-Carvalho, S.
- Van Leeuwen, P.J.
- Nerger, L.
- Barth, A., meer
|
- Altaf, M.U.
- Brasseur, P.
- Kirchgessner, P.
- Beckers, J.-M., meer
|
|
Abstract |
This paper compares several commonly used state-of-the-art ensemble-based data assimilation methods in a coherent mathematical notation. The study encompasses different methods that are applicable to high-dimensional geophysical systems, like ocean and atmosphere and provide an uncertainty estimate. Most variants of Ensemble Kalman Filters, Particle Filters and second-order exact methods are discussed, including Gaussian Mixture Filters, while methods that require an adjoint model or a tangent linear formulation of the model are excluded. The detailed description of all the methods in a mathematically coherent way provides both novices and experienced researchers with a unique overview and new insight in the workings and relative advantages of each method, theoretically and algorithmically, even leading to new filters. Furthermore, the practical implementation details of all ensemble and particle filter methods are discussed to show similarities and differences in the filters aiding the users in what to use when. Finally, pseudo-codes are provided for all of the methods presented in this paper. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.