Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [353340] |
A deep learning multimodal method for precipitation estimation
Moraux, A.; Dewitte, S.; Cornelis, B.; Munteanu, A. (2021). A deep learning multimodal method for precipitation estimation. Remote Sens. 13(16): 3278. https://dx.doi.org/10.3390/rs13163278
In: Remote Sensing. MDPI: Basel. ISSN 2072-4292; e-ISSN 2072-4292, meer
| |
Author keywords |
rain detection; rain rate estimation; QPE; rain gauge; radar; OPERA; satellite; radiometer; MSG SEVIRI; deep learning; convolutional neural network; semantic segmentation |
Auteurs | | Top |
- Moraux, A., meer
- Dewitte, S., meer
- Cornelis, B.
- Munteanu, A.
|
|
|
Abstract |
To improve precipitation estimation accuracy, new methods, which are able to merge different precipitation measurement modalities, are necessary. In this study, we propose a deep learning method to merge rain gauge measurements with a ground-based radar composite and thermal infrared satellite imagery. The proposed convolutional neural network, composed of an encoder-decoder architecture, performs a multiscale analysis of the three input modalities to estimate simultaneously the rainfall probability and the precipitation rate value with a spatial resolution of 2 km. The training of our model and its performance evaluation are carried out on a dataset spanning 5 years from 2015 to 2019 and covering Belgium, the Netherlands, Germany and the North Sea. Our results for instantaneous precipitation detection, instantaneous precipitation rate estimation, and for daily rainfall accumulation estimation show that the best accuracy is obtained for the model combining all three modalities. The ablation study, done to compare every possible combination of the three modalities, shows that the combination of rain gauges measurements with radar data allows for a considerable increase in the accuracy of the precipitation estimation, and the addition of satellite imagery provides precipitation estimates where rain gauge and radar coverage are lacking. We also show that our multi-modal model significantly improves performance compared to the European radar composite product provided by OPERA and the quasi gauge-adjusted radar product RADOLAN provided by the DWD for precipitation rate estimation. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.