Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [356238] |
Benthic animal-borne sensors and citizen science combine to validate ocean modelling
Lavender, E.; Aleynik, D.; Dodd, J.; Illian, J.; James, M.; Smout, S.; Thorburn, J. (2022). Benthic animal-borne sensors and citizen science combine to validate ocean modelling. NPG Scientific Reports 12(1): 16613. https://dx.doi.org/10.1038/s41598-022-20254-z
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, meer
| |
Auteurs | | Top |
- Lavender, E.
- Aleynik, D.
- Dodd, J.
- Illian, J.
|
- James, M., meer
- Smout, S.
- Thorburn, J.
|
|
Abstract |
Developments in animal electronic tagging and tracking have transformed the field of movement ecology, but interest is also growing in the contributions of tagged animals to oceanography. Animal-borne sensors can address data gaps, improve ocean model skill and support model validation, but previous studies in this area have focused almost exclusively on satellite-telemetered seabirds and seals. Here, for the first time, we develop the use of benthic species as animal oceanographers by combining archival (depth and temperature) data from animal-borne tags, passive acoustic telemetry and citizen-science mark-recapture records from 2016–17 for the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. By comparing temperature observations to predictions from the West Scotland Coastal Ocean Modelling System, we quantify model skill and empirically validate an independent model update. The results from bottom-temperature and temperature-depth profile validation (5,324 observations) fill a key data gap in Scotland. For predictions in 2016, we identified a consistent warm bias (mean = 0.53 °C) but a subsequent model update reduced bias by an estimated 109% and improved model skill. This study uniquely demonstrates the use of benthic animal-borne sensors and citizen-science data for ocean model validation, broadening the range of animal oceanographers in aquatic environments. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.