Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [362095] |
Comparative analysis of machine learning prediction models of container ships propulsion power
In: Ocean Engineering. Pergamon: Elmsford. ISSN 0029-8018; e-ISSN 1873-5258, meer
| |
Trefwoord |
|
Author keywords |
Propulsion power; Fuel consumption; Gas emissions; Machine learning; Prediction models; Container ships; Marine transport |
Auteurs | | Top |
- Ferreira, R.S.
- de Lima, J.V.P.
- Caprace, J.-D., meer
|
|
|
Abstract |
Regulations on Greenhouse Gas (GHG) ship's emissions and air pollutant are becoming more restrictive. Therefore, a big effort is being put into ship efficiency discussion, specially on predictive models related to route optimization, fuel consumption and air emissions. This paper compares machine learning predictive algorithms, based on the following techniques: least-squares, decision trees and neural networks, to estimate ship propulsion power between two 8400 TEU container ships from the same series. Additionally, the influence of having a predictive algorithm trained with data of its sister ships is invesitgated. The data used in this study were recorded from 2009 to 2014 reaching almost 290,000 entries. The results indicate that random forest regression model and decision trees ensemble models have the best fit for this purpose. It has also confirmed the feasibility of predicting the delivered power of a ship having a machine learning algorithm feed with a sister ship information despite differences in the route and/or operating conditions. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.