Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [362210] |
Prediction of fish location by combining fisheries data and sea bottom temperature forecasting
Ospici, M.; Sys, K.; Guegan-Marat, S. (2022). Prediction of fish location by combining fisheries data and sea bottom temperature forecasting, in: Sclaroff, S. et al. Image Analysis and Processing – ICIAP 2022. Lecture Notes in Computer Science, 13233: pp. 437-448. https://dx.doi.org/10.1007/978-3-031-06433-3_37
In: Sclaroff, S. et al. (2022). Image Analysis and Processing – ICIAP 2022. Lecture Notes in Computer Science, 13233. Springer: Cham. ISBN 978-3-031-06432-6; e-ISBN 978-3-031-06433-3. XIV, 495 pp. https://dx.doi.org/10.1007/978-3-031-06433-3, meer
In: Lecture Notes in Computer Science. Springer-Verlag: Heidelberg; Berlin. ISSN 0302-9743; e-ISSN 1611-3349, meer
| |
Beschikbaar in | Auteurs |
|
Documenttype: Congresbijdrage
|
Trefwoord |
|
Author keywords |
Computer vision; Machine learning; Spatiotemporal modelling; Fisheries; Remote sensing data |
Auteurs | | Top |
- Ospici, M.
- Sys, K., meer
- Guegan-Marat, S.
|
|
|
Abstract |
This paper combines fisheries dependent data and environmental data to be used in a machine learning pipeline to predict the spatio-temporal abundance of two species (plaice and sole) commonly caught by the Belgian fishery in the North Sea. By combining fisheries related features with environmental data, sea bottom temperature derived from remote sensing, a higher accuracy can be achieved. In a forecast setting, the predictive accuracy is further improved by predicting, using a recurrent deep neural network, the sea bottom temperature up to four days in advance instead of relying on the last previous temperature measurement. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.