Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [396090] |
Winter Arctic sea ice volume decline: uncertainties reduced using passive microwave-based sea ice thickness
Soriot, C.; Vancoppenolle, M.; Prigent, C.; Jiménez, C.; Frappart, F. (2024). Winter Arctic sea ice volume decline: uncertainties reduced using passive microwave-based sea ice thickness. NPG Scientific Reports 14(1): 21000 . https://dx.doi.org/10.1038/s41598-024-70136-9
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, meer
| |
Auteurs | | Top |
- Soriot, C.
- Vancoppenolle, M., meer
- Prigent, C.
|
|
|
Abstract |
Arctic sea ice volume (SIV) is a key climate indicator and memory source in sea ice predictions and projections, yet suffering from large observational and model uncertainty. Here, we test whether passive microwave (PMW) data constrain the long-term evolution of Arctic SIV, as recently hypothesized. We find many commonalities in Arctic SIV changes from a PMW sea ice thickness (SIT) 1992-2020 time series reconstructed with a neural network algorithm trained on lidar altimetry, and the reference PIOMAS reanalysis: relatively low differences in SIV mean (4615 km3, 37%), SIV trends (46 km3, 17%), and phased variability (r2=0.55). Key to reduced differences is the consistent evolution of many SIV contributors: seasonal and perennial ice coverage, their SIT contrast, whereas perennial SIT provides the largest remaining uncertainty source. We argue that PMW includes useful SIT information, reducing SIV uncertainty. We foresee progress from sea ice reanalyses combining dynamical models and data assimilation of PMW SIT estimates, in addition to the already assimilated PWM sea ice concentration. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.