Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
[ meld een fout in dit record ] | mandje (1): toevoegen | toon |
one publication added to basket [75801] | |
Assimilation of ocean colour data into a biochemical model of the North Atlantic: Part 2. Statistical analysis Natvik, L.-J.; Evensen, G. (2003). Assimilation of ocean colour data into a biochemical model of the North Atlantic: Part 2. Statistical analysis. J. Mar. Syst. 40-41: 155-169. https://dx.doi.org/10.1016/S0924-7963(03)00017-4
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573, meer
Ook verschenen in: Grégoire, M.; Brasseur, P.; Lermusiaux, P.F.J. (Ed.) (2003). The use of data assimilation in coupled hydrodynamic, ecological and bio-geo-chemical models of the ocean. Selected papers from the 33rd International Liege Colloquium on Ocean Dynamics, held in Liege, Belgium on May 7-11th, 2001. Journal of Marine Systems, 40-41. Elsevier: Amsterdam. 1-406 pp., meer
|
Beschikbaar in | Auteurs |
Trefwoorden |
Data Models Marien/Kust |
Author keywords |
|
Auteurs | Top | |
|
Abstract |
In this paper, we make some important remarks about linear versus nonlinear systems, emphasizing the fact that a data assimilation problem may become extremely complicated for strongly nonlinear problems. Statistical moments of any order may develop from Gaussian initial conditions during nonlinear evolution, and important information may be discarded by calculating an estimate based on only the Gaussian part of the full probability distribution. We demonstrate that a Monte Carlo approach can provide information about the system under consideration. For example, an ensemble of states, which is a representative of the true probability density function, can be visualized in one, two or three dimensions. Also, one can find estimates for the degree of nonnormality of the ensemble, which may act as indicators of the validity of performing a data assimilation based on the Gaussian part of the full probability distribution. |
Top | Auteurs |