Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
one publication added to basket [348868] |
Predicting the presence and abundance of bacterial taxa in environmental communities through flow cytometric fingerprinting
Heyse, J.; Schattenberg, F.; Rubbens, P.; Müller, S.; Waegeman, W.; Boon, N.; Props, R. (2021). Predicting the presence and abundance of bacterial taxa in environmental communities through flow cytometric fingerprinting. mSystems 6(5): e00551-21. https://dx.doi.org/10.1128/msystems.00551-21
In: mSystems. American Society for Microbiology: Washington, DC. e-ISSN 2379-5077
| |
Trefwoorden |
Aquaculture Flow cytometry Monitoring
|
Author keywords |
16S rRNA gene amplicon sequencing, cell sorting, machine learning, microbial community dynamics |
Auteurs | | Top |
- Heyse, J.
- Schattenberg, F.
- Rubbens, P.
- Müller, S.
|
- Waegeman, W.
- Boon, N.
- Props, R.
|
|
Abstract |
Microbiome management research and applications rely on temporally resolved measurements of community composition. Current technologies to assess community composition make use of either cultivation or sequencing of genomic material, which can become time-consuming and/or laborious in case high-throughput measurements are required. Here, using data from a shrimp hatchery as an economically relevant case study, we combined 16S rRNA gene amplicon sequencing and flow cytometry data to develop a computational workflow that allows the prediction of taxon abundances based on flow cytometry measurements. The first stage of our pipeline consists of a classifier to predict the presence or absence of the taxon of interest, with yielded an average accuracy of 88.13% ± 4.78% across the top 50 operational taxonomic units (OTUs) of our data set. In the second stage, this classifier was combined with a regression model to predict the relative abundances of the taxon of interest, which yielded an average R2 of 0.35 ± 0.24 across the top 50 OTUs of our data set. Application of the models to flow cytometry time series data showed that the generated models can predict the temporal dynamics of a large fraction of the investigated taxa. Using cell sorting, we validated that the model correctly associates taxa to regions in the cytometric fingerprint, where they are detected using 16S rRNA gene amplicon sequencing. Finally, we applied the approach of our pipeline to two other data sets of microbial ecosystems. This pipeline represents an addition to the expanding toolbox for flow cytometry-based monitoring of bacterial communities and complements the current plating- and marker gene-based methods. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.