Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
[ meld een fout in dit record ] | mandje (1): toevoegen | toon |
one publication added to basket [349634] | |
Assessing seasonal hydrological model parameters for a better real-time forecasting performance Nsubuga, R. (2021). Assessing seasonal hydrological model parameters for a better real-time forecasting performance. MSc Thesis. VUB/KU Leuven: Brussels. vi, 59 pp.
|
Thesis info:
|
Beschikbaar in | Auteurs |
| |
Documenttype: Doctoraat/Thesis/Eindwerk |
Author keywords |
|
Auteurs | Top | |
|
Abstract |
The model parameters are assessed for seasonal-sensitivity, and the most seasonally-sensitive parameters are: Umax, CQOF, TIF and TG. Two methods for splitting seasons are studied:- based on (1) dates; and (2) L/Lmax; and a model is developed for each method. A model calibrated with a uniform single parameter set is also developed and used as the base-model to assess the seasonal models’ performance. A multi criteria model performance evaluation is used, which includes using goodness-of-fit statistics, hydrograph comparison and extreme value analysis. From the results, the models with seasonally-calibrated parameters show improved simulations over the single parameter set model for at least 2 of the 3 studied catchments. All the goodness-of-fit statistics showed modest improvements. The seasonal models simulate the winter peaks with relatively reduced bias, respond significantly better to the summer peaks, and show a reduction in the water balance error. For the extreme flow analysis, the seasonal models show mostly reduced bias in simulating the extreme flows. Both the date- and L/Lmax-split seasonal models alternately perform superior to each other, and they mostly show very similar behavior on average. Overall, the seasonally-calibrated models showed an interesting possibility for increasing CRR model performance. It is especially important for catchments where a single parameter set CRR model shows performance tradeoffs during the varying seasons. |
Top | Auteurs |