Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
[ meld een fout in dit record ] | mandje (1): toevoegen | toon |
one publication added to basket [391014] | |
Themachinethatgoesping: Pythonic(++) processing of MBES and SBES data Urban, P.; Praet, N.; Vandorpe, T.; Hermans, T. (2024). Themachinethatgoesping: Pythonic(++) processing of MBES and SBES data, in: EGU General Assembly 2024. Vienna, Austria & Online, 14-19 April 2024. pp. EGU24-19250. https://dx.doi.org/10.5194/egusphere-egu24-19250
In: (2024). EGU General Assembly 2024. Vienna, Austria & Online, 14-19 April 2024. European Geosciences Union: [s.l.].
|
Beschikbaar in | Auteurs |
| |
Documenttype: Samenvatting |
Trefwoord |
|
Auteurs | Top | |
|
Abstract |
A few powerful tools already exist for processing and investigating multibeam echosounder (MBES) data. They fulfill many industrial and scientific needs regarding quick visualization and bathymetric processing. However, none of these tools sufficiently target scientists that need to- develop new or custom MBES processing methods. Projects focusing on investigating objects in the water column (e.g. gas bubble streams, suspended particulate matter, fish, …) formed the base for a new MEBS processing tool that is currently being developed within the framework of the TURBEAMS project. The aim is a tool that possesses the flexibility to execute custom processing routines, the transparency to understand the specific equations applied to the acoustic raw data, and the power to efficiently apply these customized routines to large amounts of MBES data gathered during scientific surveys. The result of these specifications evolved into themachinethatgoesping (short: Ping), a new open-source python library (implemented in c++) for processing multi- and singlebeam echosounder data. Ping aims at simplifying the development and application of novel processing methods by providing a performant, pythonic interface to the acoustic raw data, together with commonly needed processing routines. A few examples: These functions – and the large amount of python data science libraries – form the base to implementing processing methods (or tools) that are shareable as comprehensive python scripts. Ping is still incomplete and e.g. currently limited to processing Kongsberg .all and Simrad EK80 .raw data files. But you can test it and follow the active development here: https://github.com/themachinethatgoesping |
Top | Auteurs |