Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Uncertainty quantification and reduction for river flood forecasting Van Steenbergen, N. (2014). Uncertainty quantification and reduction for river flood forecasting. PhD Thesis. KU Leuven. Groep Wetenschap & Technologie. Arenberg Doctoraatsschool: Leuven. ISBN 978-94-6018-799-5. Xii, 171 pp.
|
Thesis info:
|
Beschikbaar in | Auteurs |
| |
Documenttype: Doctoraat/Thesis/Eindwerk |
Trefwoorden |
Uncertainties |
Auteurs | Top | |
|
Abstract |
To quantify the uncertainty in the flood forecasts a non-parametric data-based approach was developed. This approach takes into account the heteroscedastic behaviour of the forecast errors and can be applied on both water level and discharge predictions. The calculation time of the method is very limited, which is crucial for its application in an operational context. The developed approach to quantify the uncertainties can also be used to identify the different sources of uncertainty and their contribution to the total flood forecast uncertainty. After simulating historical forecasts and eliminating individual sources of uncertainty (e.g. by making use of observations instead of forecasts), the total hydrological forecast uncertainty could be split in its sources by applying variance decomposition. Based on this improved insight in the uncertainty composition, targeted improvement actions could be defined, which aim to reduce the flood forecast uncertainty in the most efficient way. The first improvement action studied was the hydrological model calibration. An advanced calibration methodology was applied that takes into account the performance of the hydrological model to make extrapolations beyond the range of historical conditions considered during model calibration. A novel method has been developed that studies the relationship between changes in peak flow versus changes in rainfall intensity. This relationship can be derived from the historical measurement series for different percentiles of flow and rainfall changes, and compared with the ones derived from the model simulation results. It is shown that by testing these relationships during the calibration of the hydrological model, more reliable model results are obtained for extremes. Another large source of uncertainty in the flood forecasts is the uncertainty in the rainfall forecasts. The total uncertainty in the rainfall forecasts was quantified based on statistical analysis of forecasted versus observed rainfall. This rainfall forecast uncertainty was propagated to the total flood forecast uncertainty by means of Monte-Carlo simulation. This method was compared with another, more popular method, based on ensemble rainfall forecasts. This ensemble is based on the perturbation of the initial conditions of the numerical weather prediction model, allowing to generate multiple rainfall predictions. It is shown that the popular ensemble approach underestimates the total rainfall forecast uncertainty. Notwithstanding these improvements in the flood forecasting system, flood forecast uncertainties cannot be fully removed; some will remain. Therefore this work also addresses the visualization and communication of these uncertainties. Different uncertainty communication methods have been worked out, implemented and tested. The best method depends on the user of the forecast results. In addition, different tools have been developed to aid in the warning and decision making process. One promising tool is the calculation of the exceedance probability of a predefined (flood) discharge threshold, based on soil moisture estimates and precipitation data. |
Top | Auteurs |